Preserving Symmetry in Preconditioned Krylov Subspace Methods
نویسندگان
چکیده
We consider the problem of solving a linear system Ax = b when A is nearly symmetric and when the system is preconditioned by a symmetric positive definite matrix M . In the symmetric case, we can recover symmetry by using M -inner products in the conjugate gradient (CG) algorithm. This idea can also be used in the nonsymmetric case, and near symmetry can be preserved similarly. Like CG, the new algorithms are mathematically equivalent to split preconditioning but do not require M to be factored. Better robustness in a specific sense can also be observed. When combined with truncated versions of iterative methods, tests show that this is more effective than the common practice of forfeiting near-symmetry altogether.
منابع مشابه
Solving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملPreconditioned Krylov subspace methods for solving nonsymmetric matrices from CFD applications
We conduct an experimental study on the behavior of several preconditioned iterative methods to solve nonsymmetric matrices arising from computational ̄uid dynamics (CFD) applications. The preconditioned iterative methods consist of Krylov subspace accelerators and a powerful general purpose multilevel block ILU (BILUM) preconditioner. The BILUM preconditioner and an enhanced version of it are ...
متن کاملEvaluation of Preconditioned Krylov Subspace Methods for Navier-stokes Equations
The purpose of this work is to compare the performance of some preconditioned iterative methods for solving the linear systems of equations, formed at each time-integration step of two-dimensional incompressible NavierStokes equations of fluid flow. The Navier-Stokes equations are discretized in an implicit and upwind control volume formulation. The iterative methods used in this paper include ...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 20 شماره
صفحات -
تاریخ انتشار 1998